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I. INTRODUCTION

This report presents a smmary of the research sponsored by

AFOSR under Grant Number 77-3151. This research was performed

during the years 1976 through 1981 by the principal investigator and

a group of graduate students.

The major objective of the research was to build mathematical

programming models and specialized software to assist Air Force

personnel at Wright-Patterson AFB in the design of the LOGAIR

Distribution System. A description of the problem, the mathematical

models developed, and the software developed is presented in Section

II. The software has been documented and installed at Wright-

Patterson and is currently being used by Air Force Logistics Comand

personnel.

A secondary objective of the principal investigator was to

address the issue of how one can automatically convert general linear

programs into network models. The underlying mathematical results

which can be used to develop either exact transformation algorithms

or heuristic transformation algorithms are presented in Section III.

This section concludes with a heuristic algorithm which, I believe,

holds the best hope for routinely converting linear programs into

network programs or network programs with extra constraints.

The list of technical reports which have been either fully or

partially supported by this grant are as follows: , , .

NOTICE OF TRA1,c,- :ITTAL TO DTTC

This tcchnical repo 't h-r b-,en dis '.1approved for pu'-lic , i.'' ,Fk 193-12.
Distribution is unrl1 it-a d. 
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II. THE LOGAIR DISTRIBUTION SYSTEM

This section reports on the successful application of mathematical

programming in a decision support system for the Air Force Logistics

Command. A complementary pair of multicommodity network flow models

is used to aid Air Force personnel in designing the air cargo network

and shipment plan (LOGAIR) utilized by the Air Force to support sixty

bases in the continental U. S. A. State-of-the-art software was

developed to solve these models and this software is currently being

used at Wright-Patterson AFB in an integrated man-machine system to aid

Air Force personnel in making annual design changes in the route

structure.

2.1 Problem Description

The U. S. Air Force has major repair facilities which are respon-

sible for the maintenance of serviceable spares for all aircraft, miss-

iles, and ground radar systems. When a subsystem fails, it is removed

and replaced by an operating subsystem. The failed system is shipped

to the repair facility, repaired, and returned to either the base of

origin or to inventory. During 1980, for example, over 2700 tons of

serviceable spares were shipped from Wright-Patterson AFB in Ohio to

Tinker AFB in Oklahoma and for the entire system of 60 bases, well over

100,000 tons of cargo was moved. Due to the magnitude of these shipping

requirements, the Air Force maintains a separate air cargo system for

shipment of these serviceable spares. Each year Air Force Logistics

Command (AFLC) personnel develop a daily air cargo shipment plan to be

used for the entire fiscal year. This section reports on a complemen-.

tary pair of multicommodity network flow models used to aid Air Force

personnel in designing the air cargo network and shipment plan.
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2.2 Survey of Literature

Due to numerous applications, ou~tig and .6cheding problems have

been extensively studied in the operations research literature. Invar-

iably, simplifying assumptions are made to specialize a problem for a

given situation (e.g. [19, 20, 41]). Many characteristics of the Air Force

cargo shipment plan design problem are also present in the areas of bus,

train, and ship routing.

In school bus routing problems one is concerned with routing in a

single period and with only a single destination. Problems in this class

are almost always approached with a heuristic method based on a modifica-

tion of the nearest unvisited city procedure developed for the traveling

salesman problem (e.g. [6, 48, 56]).

Silman, Barzily, and Passy [50] present heuristic procedures for de-

veloping schedules for city buses. They propose a two phase approach for

devising bus routes and schedules. Phase I obtains a set of potential

routes while the second phase gives the frequency of travel. Their general

approach is adaptable to the Air Forge pxablem but their specific heuristic

is specialized for only routing buses. Billheimer and Gray [12] address

the general fixed-charge multicommodity network flow problem in the context

of Mass Transportation Network Design. However, they assume that all arcs

have infinite capacity which greatly simplifies the solution procedure.

Ferguson and Dantzig [18] present a model for assigning aircraft to

routes. However, they assume the routes given and ignore all fixed charges.

Bellmore, Bennington, and Lubore 19] present a model for assigning tankers

to shipping routes to maximize a utility function. They view the tankers

as the commodities and assume a possible loading after the tankers have

been assigned to routes. Again the routes are assumed given and there

are no fixed charges incurred for using a shipping lane. A similar study

on the movement of train cars over a rail system was conducted by White
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and Wrathall [58]. Unlike the Air Force problem, the network topology

and schedules are input for their system. Geoffrion and Graves [21]

solved a large warehouse location distribution problem for Hunt-Wesson

Foods, Inc. and; Marsten and Muller [45] solved some special models for

the Flying Tiger Line, but these models are not applicable for the Air

Force problem.

Demmy and Brant [151, in an early paper, were the first to model

the Air Force problem. Their model was a large linear program with

GUB constraints. Agin and Cullen [1] present a model for the general

vehicle routing and scheduling problem, and Richardson [49] presents a

routing model for commercial airline schedule planning. Unfortunately,

these models when applied to the Air Force problem produce mixed integer

programs for which there is little hope of finding an efficient solution

procedure.

2.3 The General Decision Support System

The AFLC defines a COA Lo-Aote as a sequence of bases and an air-

craft type such that the first base and the last base in the sequence

are the same. This guarantees that both the aircraft and crew are re-

turned to the home base. Two major types of aircraft, the Lockheed L1O0

and L188, are currently being used in the air cargo system. The charact-

eristics of these aircraft are given in Table 1. The sequence of bases

(Tinker, Hill, Travis, Robbins, Tinker} along with the Lockheed LI00 is

a cargo-route in which the fixed costs (cost for flying the route with

an empty L1OO), the variable cost (fuel consumption cost as a function

of cargo weight for the L100), and cargo capacity are known. A set of

cargo-routes for the 60 base system is called an a4A CArqo pt".

. .. . . .. _ i , L ,,-



TABLE 1. AIRCRAFT CHARACTERISTICS (1980 DATA)

Aircraft
Aircraft Characteristics

L100 L188

Transportation Cost 3.5260 2.4128
($/mile)

Fuel Consumption Cost 0.9936 1.0304
(S/mile)

Empty Weight 74,746 56,013
(lbs)

Full Weight 120,746 86,538
(lbs)

Usable Cargo Capacity 43,160 28,640
(lbs)

Total Cargo Capacity 46,000 30,525
(Cargo plus pallets)
(lbs)

Variable Component of 0.87703x10 5  1.2691xl0 5

Cost
($/mi le) 51

F.B
E *D

Fixed Component of 3.1475 2.0493
Cost
(S/mile)

A -o

D
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Based on forecasted cargo shipment data, each year AFLC personnel

develop an air cargo plan to be flown on a daily basis for the next fisc-

al year. The routes in the plan are flown by civilian carriers and are

not subject to change during the fiscal year. The objective of AFLC

personnel is to select the least cost set of cargo-routes which satisfy

the point-to-point demands for cargo movement among 60 Air Force Bases.

Following the work of Agin and Cullen [1] a global optimization model

of this planning problem can be developed. This global model is a mixed

integer program with over 3 million continuous variables and over 60 thou-

sand binary variables. In contrast to the above approach, we have chosen

to develop an integrated man-machine system which may be used in the de-

velopment of an air cargo plan. The three inputs of this system are as

follows:

(i) aircraft characteristics (Table 1),

(ii) a 60 by 60 cargo forecast matrix, and

(iii) a 60 by 60 distance matrix which gives

the flight distance between all pairs

of bases.

Using only the cargo forecast matrix and the distance matrix as inputs,

a nominal set of cargo-routes is produced. The nominal set is selected

in such a way that the system pound-miles is a minimum. These routes

use hypothetical aircraft and may violate constraints on the length of

time a crew travels before it returns to the home base.

Using the aircraft available and taking into consideration other

system constraints, Air Force personnel modify the nominal cargo-routes

to form a set of potential routes. An integer programming problem is

-7-

...............................................



then solved to develop an air cargo plan from the set of potential routes.

The analytical tools, input data, and the man-machine interaction is illus-

trated in Figure 1.

2.4 The Flow Generator and Route Selector Models

We now present the mathematical notation used to define a cargo-

route. A nettQAk G - [N, A] consists of a node set N and a set of or-

dered pairs of nodes A - {e, ... , et 1. A CiAacut is defined to be a

finite sequence of the form {sl, (SlS2), s2, (s2,s3)9 ...I. Sm, (s m's)

s1} where si e N and each pair (si,sj) E A. A circuit along with an air-

craft type specifies a cargo-route.

Let A denote the node-arc incidence matrix for a network and let C

denote the set of arcs in some circuit in the network. Let y be any

vector such that Ay - 0. Such a vector has been referred to as a 6ow

by Berge and Ghouila-Houri 11]. Let

1, if the jth arc is a member of C,
zj -
-i 0, otherwise.

Then the vector z is a flow and will be referred to as a v1ecto-cicuit

corresponding to C.

For the Air Force problem, we use a linear program to obtain a vec-

tor y satisfying Ay - 0 and y > 0. We then apply a simple labeling algo-

rithm to decompose y into a set of vector-circuits and nonnegative multi-
p

pliers such that y - z_* The problem of finding a basis of cycles
i=i

in a graph has been extensively studied in the literature (see [2, 10, 46

47, 56]). The _ may be viewed as a set of nominal cargo-routes each

with aircraft having capacity of at least ai"

---



Cargo-Route

)i Generator Code

Input 1I
Data Nominal Cargo-Routes

Cargo Demand _ 1/
And Distances
Between All
Pairs of Bases > Air Force Personnel

I l Input

_ _ Data

I Aircraft a
Characteristics

Set of Feasible Routes

,1L
-- Route Selector Code

Air Cargo Plan

Figure 1. Data and codes used to develop an
Air Cargo Plan.
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Letting N denote the number of bases, there are a potential of N(N-l)

arcs (i.e. total arcs in a complete network). Suppose M < N(N-l) arcs are

selected for consideration and let A denote the corresponding N by M node-

arc incidence matrix. Let cj for j - 1, ..., M, denote the flying dist-

ance associated with each of these arcs, and let c denote the vector of

distances. For each pair of bases, (i,j), let d j denote the total quant-

ity of serviceable spares to be shipped from base i to base j in units ot

pounds per day. Since the capacity of the aircraft must be shared by all

goods with various origin-destination pairs, these must be distinguished

in the model. For our models the commodities are associated with the nodes

of origin. We let the node length vector r kdenote the requirement vector

for commodity k. If rk > 0, then node i is called a supply point for commod-

ity k with supply of r.i If r < 0, then node i is called a demand point

for commodity k with demand of Irk,. For the Air Force problem the require-

ment vectors are defined as follows:

f-d ki k 0 i

kk = 1, ... , N,

r'i N 1/i 1, *.,N.

j-9 d~k i
j;1

A -

k
Letting Xj denote the flow of commodity k in arc ej with corresponding

k
vector x , the Flow Generator Model seeks a flow y which satisfies the

demand while minimizing system pound-miles. Mathematically the Flow

Generator Model may be stated as follows:

-10-



m:Ln cy/

s.t. Ak -r k xk > 0 k 1, ...,N

AX_. A~a.0O<.X<u $(1)
N k

-lk-2 -N 
Given an optimal solution to (1), say Cx, x , .... , Y )1 we

* 1 p'
decompose y into a set of vector-circuits, z , ... , z_, and positive

multipliers aI, ... ' a , such that y - az. The vector-circuits
_ _ _l

define nominal routes for the system. The algorithm used to obtain the

vector-circuits may be found in Ali 15].

Using the nominal routes as a guide, a set of approximately 25 feas-

ible routes are input to an integer program for final route selection.

Suppose there are L routes in the feasible set. Let the set R, - fej

e J21- e } denote the arcs in route k. Let the arc set be given by

A£,.l..,LR . Then the network used in the Route Selector Model is (, A]

where N - {, ... , N}. Let A denote the node-arc incidence matrix asso-

ciated with (N, A]. Letting f9 and b denote the fixed charge and air-

craft capacity for route t, respectively; the Route Selector Model is

given by

N k L
min k 1cx + 1 f yt (2)

Ak k
s.t. Ax = r k  k - 1, N (3)

N x < bE, for all e R (4)

kil and Z - 1, ,.., L

-11-



aN k

e eR kulL15
jt

y£ {o, li, - 1 , ... , L (6)
Yk L 6
k 0 , k = ,.. ,(7)

where M is a large positive number. Constraint (4) insures that the

aircraft capacity is not exceeded and constraint (5) forces the binary

route variable y, to assume the value of 1 if route Z is used. The

above model is a multicommodity fixed charge network flow problem. Sol-

ution of (2) - (7) provides a set of optirum routes from the set of L

feasible routes which if flown daily will guarantee that the daily demand

is met subject to aircraft capacity constraints. The underlying assump-

tions associated with this model are as follows:

(i) All cargo has the same priority.

(ii) Loading and unloading costs have been

ignored.

(iii) Cargo volume restrictions have been

ignored. (However, these can be in-

corporated into the model at the ex-

pense of increasing the number of

constraints).

(iv) Circuitous routing is allowed to meet

the demand constraints.

The integrated man-machine system used to develop an air cargo plan

is illustrated in Figure 2.

-12-
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>[Flow Generator Model

Linear Program
Rows = 4000
Cols = 18,000

Flow Vector : y

V
Circuit Decomposeri

Cargo Demand I Nominal Cargo-Routes: z1, "''' z

And Distances I Norinal Aircraft Capacities: ai, "' .
Between All $ P

Pairs of Bases
- ~Air Force Personnel k________

4'. _ _ _Aircraft

-Characteristics
Set of Feasible Routes
(20 to 25 cargo-routes)

Route Selector Model
Mixed 0-1 Integer
Program
Rows = 3400
Cols = 9300
Binary Var 20 to 25.1

Air Cargo Plan (15-18 Routes)

Figure 2. Procedure used to develop an
Air Cargo Plan.
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2.5 Computational Experience

The primal partitioning code for solving multicommodity network flow

problems reported in [4] has been specialized for the Flow Generator Model

(see [31] for a complete description of the primal partitioning algorithm).

This system carries the inverse of the working basis in product form using

the technique described in [31). The reinversion routine is based on the

work of Hellerman and Rarick [36] and uses the spike swapping procedure

described in 132]. A simple circuit identifier algorithm has also been

coded. Both codes are written in standard FORTRAN and have been run on

a CDC Cyber 73.

The Civil Aeronautics Board provided the distance matrix for the 60

Air Force Bases in the continental U. S. A. and the Air Force Logistics

Command provided the point-to-point demands (d ij) for the fiscal years

1979 and 1980. From this data two test problems for each year were gener-

ated. The two test problems differ only in the number of arcs used to

define the network used in the Flow Generator Model.

The termination criterion used for problems 2 and 4 was to check the

objective function every 1000 iterations and terminate if the objective

function value became less than 5 x 10A This number was selected arbi-

trarily, though keeping in mind that the routes generated by AFLC personnel

for 1980 yielded a cost of 222.5x108 pound-miles. The two smaller problems,

problems 1 and 3, were solved to optimality. Table 2 summarizes relevant

information obtained in solving these problems. Note that the vector-cir-

cuit generator takes only a few seconds while the multico-nsodity code re-

quires more than 20 minutes to obtain an acceptable solution.

-14-



TABLE 2. COMPUTATIONAL EXPERIENCE WITH ROUTE GENERATOR MODEL

Row Description Problem Number
1, 4

PROBLEM CHARACTERISTICS 1

Nodes 60 60 56 56

Arcs 249 313 237 305

Commodities 61 61 57 57

LP rows 3967 4031 3483 3551

LP columns 15009 18913 14277 18425

Linking Constraints 246 310 234 302

Data Source Year 1979 1979 1980 1980

SOLUTION STATISTICS

Objective function value .36235 .41256 .15632 .44889

x 109

Termination Criterion optimal conditional optimal conditional

Time in CP minutes 21 29 19 26

Iterations 11,605 13,000 11,349 12,000

Reinversions 77 87 76 76

Time for vector-circuit 6.3 8.1 6.2 7.8

selector in seconds

* 9
Conditional termination when obj value < 5 x 10

-15-



We also designed and implemented a large-scale FORTRAN computer

code to be used in obtaining the solution of the Route Selector Model.

The code employs a branch-and-bound scheme with separation and candi-

date selection guided by heuristic rules. The free integer variable

furthest from an integral value is chosen for separation. The candi-

date subproblems most recently created are chosen first with preference

given to those whose separation variable was fixed at 1 when created.

The branch-and-bound tree was kept on disk in groups of 16 nodes, making

use of the CDC mass storage input/output subroutines. The system was

designed to allow the user to terminate a run with the current branch-

and-bound tree and later restart with that tree.

It is shown in [33] that the continuous relaxation of a candidate

subproblem can be formulated as a minimum cost multicommodity network

flow problem. Thus we make use of a specialization of the primal par-

titioning code of 14] for efficient solution of the relaxed candidate

subproblems. The route selector system was tested on the 1980 data

using 17 routes supplied by AFLC personnel and 8 routes developed using

the Flow Generator Model. This yielded a fixed charge multicommodity

model having 25 binary variables, 9349 continuous variables, and 3355

constraints.

Beginning with an initial feasible solution supplied by AFLC per-

sonnel, the system was used to generate a branch-and-bound tree having

1U23 nodes. This required 46 restarts and took approximately 23 hours

of computer time over a 3 week period. At the termination of the run,

there were 15 nodes remaining in the candidate list. Only one new in-

cumbent was developed during the computation but the estimated cost sav-

ings of this incumbent was approximately $800,000. The new route struc-

ture involved the substitution of one of the 8 routes generated by the

Flow Generator Model for one of the original 17 supplied by the Air Force.

-16-



2.6 Implementation

The two models and specialized software systems described above

evolved over the period 1976 - 1980. All code development was done

at Southern Methodist University by the authors for the Directorate

of Transportation located at Wright-Patterson Air Force Base in Dayton,

Ohio. Transportation personnel had many years of experience with the

Air Force system, but they had little background in mathematical analysis

and no background in either mathematical or computer programming. Even

though AFLC personnel were unfamiliar with optimization models, the problem

was ideally suited for operations research analysis. The important

characteristics which made this study feasible are as follows:

(i) The problem was well-defined.

(ii) It was a planning (as opposed to an 0

operational) problem in which the plan

was reevaluated annually.

(iii) The problem involved a large cash outlay,

$50,000,000. Hence a 1% savings was very

significant.

(iv) Most of the data was already being colqcted

and stored on magnetic tape. There was essen-

tially no new data which had to be collected

by the client.

(v) The client had been attempting to solve tv

problem manually and had an appreciation for

the complexity of the problem.

Rather than implement both models simultaneously, we chose to install

only the Route Selector Model in which all binary variables are fixed by

the user. The user selects the routes and the system loads the routes to

-17-
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optimally satisfy the demand. An elaborate report generator

was attached to this system to provide the client with detailed infor-

mation about flow in the system. In particular, legs of routes

running at 100% capacity and underutilized legs are highlighted. This

system has been implemented at Wright-Patterson and was used to

#tvelop the air cargo plan for fiscal year 1981. The client was

very pleased with this basic system and was able to run the system

and interpret the results without the aid of the authors. The system

i.s currently being used to develop the annual routing plan.

8-
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III TRANSFORMING LINEAR PROGRAMS

INTO NETWORKS WITH SIDE CONSTRAINTS

Since the development of the primal simplex method by George B.

Dantzig in 1947, linear programming has been used as a fundamental

planning tool for solving a wide variety of problems in industry and

government. Due to the development of extremely efficient solution

algorithms, a special class of linear programs known as network models

have emerged as one of the most important models available to operations

research analysts. Since the constraint matrices of real world linear

programs usually have only a few nonzero elements (i.e. more than 98%

of the matrix elements are zero) we are convinced that these problems

either contain large embedded networks or can be transformed to a prob-

lem which contains a large network. If this is the case, then techniques

which combine linear programming technology with network technology can

be used to solve such problems.

The underlying hypothesis of this project is that general linear

programs can best be solved by transforming them to networks with side

constraints. Unlike the theory of linear programing which is based

on mathematical results from linear algebra and convex analysis, this

investigation is cast in the mathematical framework of matroid theory. a
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3.1 Linear Network Models

A network is composed of two types of entities: arcs and nodes.

The arcs may be viewed as unidirectional means of commodity transport,

and the nodes may be interpreted as locations or terminals connected

by the arcs. Hence, arcs may represent aircraft flights in a distri-

bution system, streets and highways in an urban transportation network,

pipes in a water distribution network, telephone lines in a communica-

tion network, and so on. The structure of a network can be displayed

by means of a labeled drawing in which nodes are represented by circles

and arcs are represented by line segments incident on two nodes. An

arrowhead on the line segment indicates the arc direction.

The structure of a network may also be described by a matrix, de-

fined as follows:

+ , f arc j is directed away
from node i

Ai, - -1, if arc j is directed toward
node i

0, otherwise

The matrix A defined above is called a node-arc incidence matrix. A

characteristic of this matrix is that each column has exactly two non-

zero entries, one being +1 and the other a -1. Any matrix (regardless

of origin) having this characteristic is called a node-arc incidence

matrix.

The minimal cost network flow problem is a linear program whose

constraint matrix is a node-arc incidence matrix. Mathematically this

problem may be stated as follows:
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min cx

S. t. Ax r

where c is a known 1 x n vector,

u is a known n x 1 vector,

0 is an n x 1 vector of zeroes,

r is a known m x 1 vector,

A is an m x n node-arc incidence matrix, and

x is an n x I vector of decision variables.

Since the expository papers by Ellis Johnson [39, 40] in 1965,

tremendous advances have been made in the area of solution techniques

for network related problems. This work was led primarily by Glover

and Klingman and their colleagues at the University of Texas (see [3,

17, 22, 23, 24, 25, 26, 27, 2B, 29)). Contributions have also been made

by Srinivasan and Thompson [51, 521 and by Bradley, Brown, and Graves

[14]. The author and his colleagues at Southern Methodist University

have been actively extending these ideas to the more complicated network

structure found in multicommodity network flow problems (see [3, 4, 32,

42, 43, 44]). Computational experimentation has shown that the new

methodology is approximately 200 times faster on pure networks and as

much as 25 times faster on more complex embedded network problems.

We call a matrix M a network matrix if it has the following three

properties:

-21-
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(Pl) The nonzero entries of M are either +1

or -1.

(P2) No column of M has more than two nonzero

entries.

(P3) If a column of M has two nonzero entries,

then one is a +1 and the other is a -1.

A network matrix M can be transformed to a node-arc incidence matrix by

simply appending a row which is the negative of the sum of all other

rows. Consider

Ia b c d e f

11 1 row 1

M- -1 row 2

1 1 row 3

Appending a row which is the negative of the sum of the other rows yields

the node-arc incidence matrix,

a b c d e f

1 1 1row 1

- - row 2

-1 - 1 row 3

-1 jI1 -1 row 4

•which corresponds to the network
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a d

2.

Hence, any linear program whose constraint matrix is a network matrix

may be solved as a minimal cost network flow problem.

3.2 Reducibility of a Linear Program

Since pure network problems are at least two orders of magnitude

easier to solve than general linear programs, several researchers have

addressed the following problem:

"When iz a geneae tineoA pogwm %educibte

(i.e. tnfo.mbte) to a minimt cost net-

wrok jlow prwbeem?"

Consider the general linear program in the following form:

min cx (8)

s.t. Ax - b (9)

0 < x < u, (10)

where c is a known 1 x n vector,

u is a known n x 1 vector,

0 is an n x 1 vector of zeroes,

A is an m x n matrix, and

x is an n x 1 vector of decision variables.

Suppose A takes the form A - [I A]. This form is always obtainable by

the addition of artificial variables with corresponding bound, ui, equal

-23-
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zero. Let T be an m x m nonsingular matrix, let R be an m x m nonsing-

ular diagonal matrix, and let D be an n x n nonsingular diagonal matrix.

Letting x - Dy and premultiplying (9) by TR yields the equivalent linear

program,

mi n (11)

A A

s.t. Ay = b (12)

0< Dy < u (13)

where c - cD

A = TRAD, and

A

b - TRb-

The problems (8) - (10) and (11) - (13) are equivalent in the sense that
,

if x solves (8) - (10), then y* i7 _: x* solves %ll) - (13) and if *

solves (11) - (13), then x* - D* solves (8) - (10). Furthermore, we

say that (8) - (10) is reducible to a network problem if and only if

TRAD is a network matrix (see properties (P1) - (P3) on page 22). But

TRAD - TR[I .A] -T[RD RAD].
1' 2

Without loss of generality we may require that DI  R- 1. Then T[RDI! RAD2]

- T[I, RAD ]. Therefore, the Reducibility Problem may be stated as

follows:

"Gvna ma.t'ix A=(11 A], doe6 theAe
I

euxZt a non gu.m matix T and non.6ng-

a(etA daqonat w.tica R and V su h

that IT TRA ia a ne&v.OAo mat..xf"
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3.3 Necessary Conditions for Reducibility

Several researchers have addressed the r, fucibility problem and

necessary conditions on T, R, and D are known. It is clear that if

T[I RAD] is a network matrix, then T is itself a network matrix. It

is shown in Bartholdi and Ratliff [8] that a nonsingular network matrix

corresponds to a tree (i.e. a connected graph having one less arc than

node). For example the nonsingular matrix

a b c d

-1 row 1

- -1 row 2T=

1 row 3

row 4

corresponds to the tree

c d

where node (row 5) does not appear in T. Therefore, T[I :RAD] is a

network matrix only if T is a tree.

A cut-set for a connected graph G is a set of edges whose removal

results in a disconnected graph and is minimal with respect to this

property. For example in the graph
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1 ja I2
/ I

/ , C "1

- 1 eb d

3 le4

{a, bi, {a, c, e}, and {a, c, dl are all cut-sets. There is a dual

relationship between the spanning tree of a graph and a cut-set. Re-

call that a spanning tree is a minimal set of edges which connects all

vertices of a graph, whereas a cut-set is a minimal set of links which

disconnects some vertices from others. From this observation it is

obvious that any spanning tree must have at least one link in common

with every cut-set. The set of fundamental cut-sets associated with a

spanning tree having n arcs is composed of the n cut-sets each having

one of the n edges from the tree. For example, for the graph

1 a2

b c d

e
3 4

with spanning tree
/'

a 2

d

-26-
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the fundamental cut-sets are {a, b}, {d, b, c}, and {e, b, c). The

corresponding cut-set matrix is given by

-a d e b c_

a 1 0 0 1 0 cut-set {a, b}

d 0 1 0 1 1 cut-set id, b, c}

e 0 0 1 1 1 , cut-set {e, b, c}

where the rows correspond to cut-sets and the columns correspond to

edges. The following result gives a relationship between a cut-set

matrix and the corresponding network matrix.

Proposition 1.

Let T be a nonsingular network matrix corresponding to a tree.

Then T[I IE] is a network matrix only if [I I E] mod 2 is a funda-

mental cut-set matrix corresponding to T.

We novy state another necessary condition for reducibility.

Proposition 2.

Let T be a nonsingular network matrix corresponding to a tree.

Then T[I ;R AD1] is a network matrix only if the nonzero elements of

R1AD, are + 1.

The above two propositions provide the basis for a transformation

algorithm given below.

TRAARSFORMATION ALGORITHM

0. Begin with the constraint matrix (I A].

1. Does there exist nonsingular diagonal matrices R and

D1 such that the nonzero elements of R1AD1 are + 1?

No - Then [I: A] is not transformable by Proposition2.

Yes - Continue with step 2.
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2. Is [I !RADI ] mod 2 a fundamental cut-set matrix for some

graph, say G?

No - Then [I.' A] is not transformable by Proposition 1.

Yes - Continue with step 3.

3. Direct the arcs of G arbitrarily and define the corresponding

node-arc incidence matrix by N1 . Let N2 be formed from N1 by

omitting one row. Let T correspond to the columns of N2 asso-

ciated with some spanning tree of G. Partition N as [T N3].
13

Convert N2 to standard form by premultiplying by T- 1 . This

gives (I T 1 N3 ]

4. Do there exist diagonal nonsingular matrices R2 and D2 having

nonzero elements + 1 such that R [I R [AD1] I 2T-. N "
25

Yes - Then [I, A] is transformable to a network matrix using

R - R2 R1 , D - DD 2 and T. That is, TR2RI[I !A]

_ 21 is a network matrix.

No - Transformation algorithm is not successful.

3.4 Matroid Theory

The question of when a matrix, [I ;E] is the cut-set matrix for

some graph has been addressed by Tutte [54] in the mathematical frame-

work known as matroid theory. A matroid (Welsh [57]) is a mathematical

structure consisting of a finite set E and a finite set C of nonempty

subsets of E such that two properties hold.

(Ml) If X # Y E C, then XXY.

(M2) If X, Y are distinct members of

C and a r XfnY ' there exists

Z c C such that ZV(XUY) - {a}.

-28-
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For example E 1, 2,3, 4, 51 and C - U1, 41, {2, 4, 5}, 3, 1, 2,

511 is a matroid.

An m x n matrix R is called a binary matrix if the nonzero elements

of R are ones. Let F denote the set of binary n-vectors generated by ail

modulo 2 row sums of the binary matrix R. That is, F - {r - aR and mod 2

ai is integer for all il. The elements of F are called chains by Tutte [55].

Define the support of a chain, f e F, denoted by IiLi as follows:

U : l-{ fi 0 01.

A chain, f # 0, of F is said to be elementary if there is no chain of F

which is a proper subset of F. Letting E - (1, ..., n) and C equal the

set of elementary supports, we have what Tutte [55] calls a binary matroid,

M(R). For example, let

1 0 0 1 0
R0 1 0 1.

Then the set of binary vectors generated by the mod 2 sum of rows of R is

given by

Number a f IILl

1 [l 00] [10 C 10] 1, 4}

2 [0 10] [01011] {2, 4, 51

3 [o 0 1] [o 0 0 ] {31

4 [110] [11 0 ] l, 2, 5)

5 [ 0] [1 0110] , 3, 41

6 [0 1 1] [0 1 11] {2, 3, 4, 5)

7 [l1] 1[ 01 ] 1, 2, 3, 51

The elementary supports are (1, 41, {2, 4, 5}, (31, and (1, 2, 51, and
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the matroid is given by E (, 2, 3, 4, 51 and C - ((1, 41, (2, 4, 51,

(3), UI, 2, 511.

Another procedure for generating a binary matroid is to consider

the cut sets of a given finite graph having, n edges. Letting E - (1,

.. nl and C - the set of cut sets for C, we also have a binary matroid.

For example, suppose G is

d 2

Then E = {a, b, c, d, e} and C ( ((a, dl, {b, d, el, {c}, {a, b, ell

forms a binary matroid. A matroid formed in this way is also called

the bond matroid of the graph G. A binary matroid is said to be graphic

if it can be represented as the bond matroid of some graph. All graphic

matroids are binary but the converse is false. The question of whether

a given binary matroid is graphic is equivalent to the question, when is

a binary matrix, [I E], the cut-set matrix some graph? Tutte [54] pro-

vided an algorithm to determine when a binary matroid is graphic and

Bixby and Cunningham 113] described a precise procedure based on Tutte's

work to generate the corresponding graph. Heller [34, 35], and Iri [37,

38], have also discussed the reducibility problem but no one has ever ex-

perimentally tested any of these procedures on a set of large real world

linear programs.

3.5 Practical Sinificance

We conjecture that at least 90% of the real world linear programs

are not reducible to minimal cost network flow problems. Therefore,
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from a strictly practical point of view, the rich theory developed to

date can not be applied directly to help solve a large class of real

world linear programs. However, modification of these results to ob-

tain networks with side constraints could be extremely valuable.

3.6 A Heuristic Algorithm

The reducibility algorithms of Bixby-Cunningham [13] and Iri [38]

either find the matrices T, R, and D required for the transformation

or conclude that no such matrices exist. We have modified these ideas

so that they can be used to produce an embedded network. This work

could drastically change the way we view linear programs and could

substantially improve the state-of-the-art software for solving linear

programs.

Consider the following linear program which has been called the

network problem with side constraints,

min cx + dz (14)

s.t. Ax =r (15)

Sx + Pz - b (16)

0< x< (17)

0 <z<r (18)

where

c is 1 x nI ,

d is 1 x n 2 ,

ris m I x 1,

b ism 2 x 1,

u is n, x l,
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r is n2 x 1,

A is mI x nl

S is a2 x nl,

P is m2 x n 2 , and

A is a network matrix. If m /(MI + m2 > .5, then we believe that a

special algorithm applied to (14) - (18), such as the Simplex Son [27],

will be substantially superior to the standard primal simplex method

applied to this problem.

We shall say that an m x n matrix [I !C] is p-reducible if there
I

exists a nonsingular p x p matrix T, and there exists nonsingular diag-

onal p x p matrices R and D, such that for some p rows of [I :C], say

TR(I is a network matrix. That is, the matrix

[I C] can be transformed as follows:

tR

_T I ~-

I:YJ J - L -

T1 TRCID ]

- I- " C D (19)1 1 2 1 3J .

The matrix (19) is, of course, the constraint matrix for a p-node network

with side constraints.

Theoretically, the problem of partial network transformation can be

described as follows:

"G&'en any nkattix U : I] d.Zn

the taqe6,t p A(uL that ia p-)e-
duP-ibe..
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The above described problem is NP-complete and we believe that there is

little hope of finding an exact solution which could be used to enhance

linear programming software. However, a good heuristic based upon the

rich theory available could prove to be extremely useful.

We now present a heuristic algorithm which we believe holds the

best hope for development of an automatic procedure for converting

linear programs to networks with side constraints.

0. Initialization

Begin with the linear system

A1x = b (20)

1. Scale To + l's

Using only row and column scaling,

let

A2x - b2  (21)

denote a subset of rows of (20) which have been scaled to the

elements 0, + 1.

2. Apply Brown-Wright Heuristic

Let A3x - b3  (22)

denote the rows of (21) which correspond to a network matrix

as obtained by the Brown-Wright heuristic.

3. Transformation

Let

A4x- b (23)

denote the rows of (21) not appearing in (22). Apply a

modification of the Bixby-Cunningham algorithm to attempt to

build a tree which transforms part of (23) to a network matrix.
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The above algorithm will be fast; however, no results concerning the

size of the network generated are available. No computational

experience with this algorithm is available at this time.

iti
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